Insight
Balanced Risk Engineering Solutions

Private Fire Hydrants

Type of Fire Hydrant System
A fire hydrant is a connection point to a water main from which water may be taken for fire fighting purposes. On an underground main the hydrant outlet and valve may take the form of an above ground pillar or be located in an underground pit beneath a cover plate, necessitating the use of a stand pipe. For a fire main within a building outlets (landing valves) will comprise of direct hose connections with associated isolating valves.

A fire hydrant system will be provided for the purpose of:

- The direct connection and use of hose lines for fire fighting.
- A supply to mobile pumps that boost the pressure to the required magnitude to supply fire fighting hose lines.

Defining this purpose is a key factor in specifying the hydrant outlet pressure and flow performance criteria.

The water supply to a hydrant system may be from a public water supply (town's main) or a private supply via pumps from a stored water source.

Associated Terms & Definitions

Fire Main
A pipe with outlets and control valves installed for the supply of fire fighting water.

Rising Main
A fire main installed within a building with outlets (landing valves) situated at specified floor levels.

Wet Fire Main / Riser
A pressurised water charged pipe with outlets to facilitate the direct connection of fire fighting hose lines. The main / riser is supplied by permanent pumps drawing water from a stored source. A wet riser is typically necessary for buildings in excess of 164ft (50m) in height to overcome the increased pressure requirement.

Dry Fire Main / Riser
A normally dry pipe into which, utilising mobile pumps, fire fighters can supply water to facilitate the direct connection of fire fighting hose lines close to the point of use.

Inlet / Breeching
A readily accessible facility for the connection of mobile pumps to supply water into a fire main.

Dry Hydrant
A permanent dry suction pipe from a water source (lake or canal) to which a mobile pump can be readily connected to draw water.

Understanding the Risk
The availability of an appropriate and reliable water supply is fundamental to the effectiveness of both public and private fire fighters in limiting fire spread and extinguishing fire.

The magnitude of water supply needs to be considered in terms of:

- Required flow rate.
- Duration of supply.

Factors needing consideration are:

- Nature of the hazard presented by the occupancy.
- Magnitude of the fire load.
- Fire resistance / combustibility of the building construction.
- Physical geometry of the premises in all three dimensions.
- Fire exposure risk from adjacent premises.
- Whether effective automatic fire protection is provided by a sprinkler system.

Various methods for assessing the required water volume for fire fighting operations have been published in different parts of the world utilizing methods ranging from the calculation of factors applicable to the premises to generic flow rates for specific classes of occupancy and historic data from fire incidents. These produce requirements indicated by Fowler (2002)\(^3\) to vary by a factor of up to 4.5, this emphasising the need for a
considered assessment of water requirements rather than simple specification of generically published figures.

It should be noted that some design codes adopt a simplistic approach to defining the magnitude of the water supply only specifying minimum criteria that do not give due consideration to the anticipated fire challenge and care is required when considering the adequacy of such a system for a particular risk.

Hydrant Performance Criteria

The following performance criteria are indicative of the range of criteria for reference only and due consideration must be given to all risk factors when determining required performance criteria for specific applications.

The agreement of proposed system performance criteria should be sought prior to finalisation from Chartis Insurance and all interested authorities having jurisdiction.

UK Fire Service “ideal requirements for new developments”

- Detached and semi-detached housing developments up to two stories. 126 US gpm (480 l/min) from a single hydrant.
- Multi-occupied housing developments of more than two stories. 317 – 554 gpm (1200 – 2100 l/min) from a single hydrant.
- Transportation service stations and car parks. 396 gpm (1500 l/min) from a single hydrant.
- Industrial developments should have a 150mm nominal diameter main network capable of supplying the following flows dependent upon the development area:
 - < 2.47 acres (1 hectare) 317 US gpm (1200 l/min)
 - 2.47 – 4.94 acres (1 – 2 hectares) 554 US gpm (2100 l/min)
 - 4.94 – 7.41 acres (2 – 3 hectares) 792 US gpm (3000 l/min)
 - > 7.41 acres (3 hectares) 1,189 US gpm (4500 l/min)
- Shopping centres, offices, recreation, and tourism developments. 317 – 1,189 US gpm (1200 – 4500 l/min) dependant on nature, extent and height of development.
- Primary Schools 317 US gpm (1200 l/min) from a single hydrant.
- Secondary Schools 554 US gpm (2100 l/min) from a single hydrant.

- For town’s main fed systems a minimum flow rate of at least 396 US gpm (1500 l/min) is required.

NFPA 291 clause 5.1 - Classification of hydrants at 20psi (1.4 bar) residual pressure

- AA – > 1500 US gpm (5680 l/min)
- A – 1000 – 1499 US gpm (3785 – 5675 l/min)
- B – 500 -999 US gpm (1900 – 3780 l/min)
- C - < 500 US gpm (1900 l/min)

Practical Considerations

For any private fire hydrant system to be of benefit the system and equipment specification must be fully compatible with the equipment to be utilised by local public and private fire fighters.

Associated signage / labelling is to be in conformance with local standards.

Locate hydrants:

- Where not likely to be obstructed (by parked vehicles, waste containers, etc).
- In a safely accessible position (not against the building, between 19ft (6m) – 295ft (90m) distant).
- Regularly spaced a suitable distance for the purpose (295ft (90m) for direct use with hose lines).

Where a hydrant system is to be used in conjunction with mobile fire pumps due consideration needs to be given to facilitating adequate access and manoeuvring space for vehicles together with hard standing with adequate load bearing capability.

The configuration of private hydrant mains as rings aids the flow of water to all hydrants. A ring incorporating strategically located zone valves facilitates maintaining most hydrants operable in the event that part of the system needs to be isolated to repair a leak or enable modification. Zone isolating valves need to be appropriately secured and clearly indicate their status (post indicator / outside screw and yolk valves).

Hydrant systems installed in areas that may be subject to freezing temperatures will need to incorporate relevant frost measures.

Hydrant outlet valves shall be provided with adequate physical support to counter the forces that fire fighters may apply to open a stubborn valve without imposing a load on the main pipe / fittings.

Appropriate measures need to be provided to protect hydrant valves and associated equipment from malicious damage or theft.

Town’s mains fed systems need to satisfy the requirements of the water supplier in respect of preventing contamination of potable water supplies and measures to prevent the collapse of their supply mains.
Private Fire Hydrants

Where a town’s main water supply is metered, to enable the supplier to charge when water is used for purposes other than fire fighting, a full bore meter by-pass valve shall be installed with its location and purpose clearly indicated.

Hydrant systems utilizing a private pumped water supply shall comprise of duplicate automatic starting pumps. Systems need to be hydraulically engineered to ensure the standing and running pressure at each outlet is of an appropriate magnitude for the purpose. This is particularly relevant for wet risers in tall buildings to ensure the outlet pressure at lower levels does not exceed safe limits [145psi (10 bar)].

Duplicate water storage tanks shall be provided configured so that water can be independently supplied from either tank to both pumps if any one tank is out of commission. Tanks shall have appropriate emergency replenishment facility (fire service inlet).

Where it is proposed to utilise an open water source due consideration needs to be given to the reliability of the supply. The water levels of lakes and rivers may be low in periods of drought and canals can be drained for maintenance.

Maintenance & Servicing

Regular testing and maintenance of hydrant systems is needed to ensure all equipment remain in operable condition and to verify the continued adequacy of the water supply.

The testing of town’s main fed hydrants can have a detrimental effect on water quality in the local supply network and is only to be carried out in conformance with the conditions of the water supplier.

References

5. NFPA 24, Standard for the Installation of Private Fire Service Mains & their Appurtenances
7. NFPA 291, Recommended Practice for Fire Flow Testing & Marking of Hydrants
8. NFPA 1142, Standard on Water Supplies for Suburban and Rural Fire Fighting
9. NFPA Handbook, Section 7, Chapter 22 Alternate Water Supplies
10. NFPA Handbook, Section 10, Chapter 3 Water Distribution Systems
11. NFPA Handbook, Section 10, Chapter 4 Water Supply Requirements for Public Supply Systems
12. NFPA Handbook, Section 10, Chapter 6 Determining Water Supply Adequacy

For further information contact your local AIG Global Property Engineer.
American International Group, Inc. (AIG) is a leading international insurance organization serving customers in more than 130 countries and jurisdictions. AIG companies serve commercial, institutional, and individual customers through one of the most extensive worldwide property-casualty networks of any insurer. In addition, AIG companies are leading providers of life insurance and retirement services in the United States. AIG common stock is listed on the New York Stock Exchange and the Tokyo Stock Exchange.

AIG is the marketing name for the worldwide property-casualty, life and retirement, and general insurance operations of American International Group, Inc. For additional information, please visit our website at www.aig.com. Products and services are written or provided by subsidiaries or affiliates of American International Group, Inc. Not all products and services are available in every jurisdiction, and insurance coverage is governed by actual policy language. Certain products and services may be provided by independent third parties. Insurance products may be distributed through affiliated or unaffiliated entities. Certain property-casualty coverages may be provided by a surplus lines insurer. Surplus lines insurers do not generally participate in state guaranty funds and insureds are therefore not protected by such funds.

The information, suggestions, and recommendations contained herein are for general informational purposes only. This information has been compiled from sources believed to be reliable. No warranty, guarantee, or representation, either expressed or implied, is made as to the correctness or sufficiency of any representation contained herein. Relyance upon, or compliance with, any of the information, suggestions or recommendations contained herein in no way guarantees the fulfillment of your obligations under your insurance policy or as may otherwise be required by any laws, rules or regulations. This information should not be construed as business, risk management, or legal advice or legal opinion.